Exosomes Digest (4/4 April 2025)
- Lisa
- 28. Apr.
- 3 Min. Lesezeit
We have collected the most exciting new researches in the field of genetics and cellular research in the past week.

Cutting-Edge Progress in the Acquisition, Modification and Therapeutic Applications of Exosomes for Drug Delivery
Exosomes are vesicles secreted by cells, typically ranging from 30 to 150 nm in diameter, and serve as crucial mediators of intercellular communication. Exosomes are capable of loading various therapeutic substances, such as small molecule compounds, proteins, and oligonucleotides, thereby making them an ideal vehicle for drug delivery. The distinctive biocompatibility, high stability, and targeting properties of exosomes render them highly valuable for future treatments of diseases like cancer and cardiovascular diseases. Despite the potential advantage of exosomes in delivering biologically active molecules, the techniques for the preparation, purification, preservation, and other aspects of stem cell exosomes are not yet mature enough. In this paper, we briefly introduce the composition, biogenesis, and benefits of exosomes, and primarily focus on summarizing the isolation and purification methods of exosomes, the preparation of engineered exosomes, and their clinical applications, to better provide new ideas for the development of exosome drug delivery systems.
Effects of 3D-printed exosome-functionalized brain acellular matrix hydrogel on neuroinflammation in rats following cerebral hemorrhage
Background
Exosome-based therapeutics have garnered significant attention for intracerebral hemorrhage (ICH) treatment due to their capacity to regulate metabolic dysregulation, restore cellular homeostasis, and modulate the injury microenvironment via bioactive cargoes such as microRNAs and proteins. However, rapid systemic clearance and enzymatic degradation critically limit their therapeutic efficacy. To address this challenge, we engineered a three-dimensional (3D) bioprinted scaffold capable of encapsulating and sustaining the release of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-exos).
Methods
Based on previous research [1,2,3], the scaffold was composed of a decellularized brain matrix (dECM), gelatin-methacryloyl (GelMA), and silk fibroin (SF) crosslinked with a photoinitiator. hUCMSC-exos were precisely incorporated via extrusion-based 3D bioprinting. Release kinetics were assessed via in vitro elution and in vivo imaging. An ICH rat model received stereotaxic implantation of the exosome-laden scaffold (dECM@exo). Neuroinflammatory markers (IL-6, TNF-α, IL-10) and apoptotic activity (JC-1, Annexin V/PI, TUNEL) were quantified. Neurological outcomes were longitudinally evaluated using the modified Longa scale, Bederson scoring, and sensorimotor tests (rotarod, forelimb placement) at 1, 4, 7 and 14 days post-ICH.
Results
dECM@exo demonstrated sustained exosome release over 14 days, significantly promoting neural tissue regeneration while attenuating perihematomal edema. Mechanistically, the scaffold modulated pathological MMP activity and inflammatory cytokine expression, thereby restoring extracellular matrix homeostasis and reducing neuronal apoptosis.
Conclusions
The findings demonstrate that the 3D biological scaffold dECM@exo effectively maintains microenvironmental homeostasis in the early stages of ICH and improves outcomes associated with the condition. dECM@exo is poised to serve as a robust platform for drug delivery and biotherapy in ICH treatment, offering a viable alternative for managing this condition.
A simple new way to detect disease using exosomes
Exosomes—tiny particles naturally released from cells—are gaining attention as powerful tools for diagnosing disease. These small extracellular vesicles carry molecular “fingerprints” from the cells they come from, making them ideal for identifying changes linked to illnesses like cancer or neurological disorders.
A new study by researchers from the University of Central Florida presents a rapid and efficient method for isolating and analyzing exosomes without the need for complicated labeling steps. The technique, called centrifugation-filtration-concentration (CFC), allows researchers to enrich exosomes up to 50-fold from cell culture media.